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AN EXPERIMENTAL INVESTIGATION OF THE AERODYNAJIC CHARACTERISTICS
OF SLENDER HYPERSONIC VEHICLES AT HIGH ANGLES OF ATTACK

i
Prepared by: f
Lo | Robert H. Feldhuhn
; i 4 Lionel Pasiuk

ABSTRAcg: An experimental investigation of the aercdynamic character-
istics of flows around highly inclined axisymmetric configurations
has béen conducted in the Hypersonic Tunnel at the U. S. Naval
Ordnance Laboratory, White Oak, at a nominal Mach number of 6 and

at nominal free stream Reynolds numbers per foot of 2.4 x 106 and

21 x 106, Static longitudinal force coefficients, surface pressure
distributions, and heat transfer distributions were measured with a
{ slightly blunted slender cone (Rp/Rp = 0.025, 9c = 5°) at angles of
{ attack as large as 54 degrees. The static longitudinal force

- coefficients of a slightly blunted 2/3 power law body of revolution
(Rp/Rp = 0.025, fineness ratio = 5,61), and two ducted cones were
also measured., Additional information concerning the separated flow
field on the leeward side of the inclined cone was determined from
schlieren photographs, surfaceioil flow patterns, and Pitot tube
surveys which were conducted ig the most leeward meridian plane.

[

3The pressure dis%ributioné on the windward side of the cone and:
the normal force coefficients of the simple bodies of revolution were
adequately predicted by Newtonian theory. Flow separation, as
determined from surface oil f1ow patterns, was found to occur in a
. tegion on the cone where an adVerse pressure gradient exists in the
} éircu@ferential direction. Furthermore, a region of attached flow

was found to exist near the pléne of symmetry on the leeward side
‘of thé cone at angles of attack below approximately 25 degrees. The
! pressure distributions alohg-tﬁe leeward meridian generator of an
{ incliﬁedgcone were fcund to bejdependent upon the Reynolds number.

he addition of a duct abbut the cone was found to substantially

éincrease the 1lift to drag’rati’ at this Mach number.
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AN EXPERIMENTAL INVESTIGATION OF THE AERODYNANIC CHARACTERISTICS
OF SLENDER HYPERSONIC VERICLES AT HIGH ANGLES OF /TTACK

This report pressnis ths reésults of the first phase of an experimental
inveatigation of fluid dynamic phenomena associated with inclined
axigymmétric configurations at hypersonic V‘locitiﬂl. Jressure,

heat transfer, force, flow field murveys aiii flow visualization

measurements are presentsd for an inclined slightly blunted 5° half

angle cone at a Yach number of 6. Force wessurements were algo
ohbtained for a slightly blunted 2/3 power law body and two ducted-
cone conflzuratious.

The 'ork descriled in this report has been aponaored by the Advanced
Research Projects Agency under ARPA order number 903, Progrun Code

No, 6330 as part of PROJECT DE!ENDER.“ R ; ‘

£. P. SCHREITEL
Captain, USN
Cormander
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6" ‘ treenstream conditions
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s ¥

a angFle of attack
am thermal diffusivity
.
v ratio of specific heats ﬂF
v
o boundary layer thickness
6 v
] J (uﬂ%~§{l - (Uw)]dy = boundary layer momentum thickness
p /
o e e e /
8, cone half angle {
m absolute viscosity / .
. | :
P density of gas ¢!
Py density of material
1

T time ‘ ‘ .
'm‘ _ azimwutbal angle neasured from most wiiddward meridian plane
Subscrigts

. local conditions at the outer edze of the bnund;ry layer
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% | : INTRODUCTION

| Slender axisymmetric shapes possess several favorable features
; ; ;

whﬁch make themﬁprime candidates for high acceleration hypersonic

-

flﬁght. [Specifically, axisymmetric conical shapes and slender power

la% shapés are bf interest because tﬁese configurations are npearly
op%imum {f one %nly considers centergof pressure variation or aero-

k {
dyéamic drag réspectively (refs. (l)ithrough (4)). However, if a
boé is required to achieve large lateral acceleration, axisymmetric
conflguratlonc must sustain a large angle of attack, or mairtain a
Vegy nigH velocity in order to comnensate for their low lift effec-
tiéeness. Both of these alternatives lead tc rather substantial
inéreasés in convective heat trsnsfef. Furthermore, the possibility
ofgsustalning %ather large angles offattack immediately .confronts
thé designer w%th the fact that theré will be regions of separated

flow on the leeward side of the cone.
. i

It is thoipurpose of this inveqfiyation to provide some funda-

mental cata concerning the aerothermodvnamﬁc properties of the flow

¥
2
|
n
%
field= around highly ~nc11ned bodies: of rewolutlon at hypersonic

speeds. One specific objective of thls study is to provide some

{

experimeptal force, heat transfer and pressure data at a hypersonic
Macih number where 2 substantial portion of the model is surrounded

by a%turbulént boundary layer., An additionzl objective of the

present irvestiation is to provide some data on axisymmetric bodies

i
I . 5 —

i

s




which provide higher 1lift to drapg ratios at hypersonic speeds than

circular conical bhedies.
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¢ffac111ty is given iu retference (5).
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EXPRRIMENTAL ADD AR aToD
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1, Test Facility

‘The present investigation was conducted in the Hypersonic

Tunnel at the Naval Ordnance Laboratory at a nominal Mach number

of 6, A two-dimensional contoured nozzle was used during this
investigation. Dry air, the test gas, 1: compressed and stored in
a bottle field. Before passing into the tunmel, the gas is heated
in & pebble bed heater to a temperatufe large enough to prevent
condensation, The wind tunnel is an open jet blowdown facility

which at stagnation préssures below 40 atmospheres exhausts

s i

throngh a fixed diffuser and an aftercooler into a compressor- o !

driven exhaust system. At supply pressures above 40‘atmospherés,

the air is exhausted into the atmosphere after passing through the

diffuser and a silencer. Testing time varies from approximately

e

oy

two minutes at supply pressurés of 100‘atmospheres to contihuous‘

operation at supply pressures of 10 atmospberes. A complete

During these expariments,‘all of the models were supported

with a simple sting which passes through the base of the model.

The entire model support assewbly is attached to a sector at the E

base of the sting. The sector is capable of continuously pitching

a model through a total angle of attack range of 75 degreea. The
angle of attack was determined from the output of a servo-driven

potentiometer that was driven by the sector.

wmemgy.  SoEEs Iz

[
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2. Models and Instrumentation

a, Pressure and Heat Trarsfer Experiments

Iwo models witn identical overall dimensions were used to obtain

- 0 NN
R RV

R /n
v Tn' . ,

L = 13.967 inches). The pressure model was fabricated from stalnless

the cone pressure and heaxt transTer data (nc w §5°

steel and had a nomin#l wall thickness of 0.063 inches. A sketch is
given in figure 1. The locations of the pressure orifices are tabu-
latdd in figure 1, At two stations on the pressure model four
oritices were circumferentially distributed 90 degrees from each
other 1n order to provide a means of checking for proper alignment

vwvith the flow., With the exception of the élignment orifices, all

‘ot the pressure taps were équallyfspgced along two conidal rays

180 degrees apart. The diameter. of the orifices for the first

‘three ‘pressure taps along each ray was 0.027 inches. The iemainder

ot the oritices were’ 0 047 1nches in . diameter.‘ Each drifice was

‘ connected to an: absolutu pressure transducer by a length of stainless

. steel tubing.‘ During ‘the axperiments that were cOnducted at supply

pressures of 10 atmospherea (Re /rt = 2.4 x 10 ) 15 psia strain gage

d:pressure transducers were employed with the pressure oritices on the
‘ windward side . and 5 psia strain gage pressure transducars were

"‘employed with the pressure oritices on the leeward side. ' For the

100 atmosphero test . conditibns (Red&t - 21 x 10 ), 100 psia strain
zage pressure transducers were employed for the windward measurements
and 5 paiu transdugers were employed for the leeward measurements. The
p;eisure transducers were housed in sealed water cooled containers in

the test ceil, These containers allow for the simultaveous calibration

: d:'updto 96 pressure transducers (ref. (6)).

st i Rt S ot S o e o
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Heat transfer measurements were made v.th a siainlemss steel s ‘i
thin alin 21izhtly Liuniwd cunical neat transfer model whose

outside dimensions were the same as those of thae nramgurs madsld

-

E
The wall thickness was machined to a nominal value of 0.020 inches. :

e QeTHmIE g FA e LR St Ry

The actual wall thickness at each station which was used in the
data reduction was measured by X-ray techniques and is tabulated

in Table I, Chromel-Alumel thermocouple wire with a nominal

Ty S I A

diameter of 0.005 inch was used to instrument the thin wall | . B
model. The locations of the ‘hermocouples and the station where

the alignment orifices were positioned\afa noted in figure 1.

T T . iy e

5 SRR

b. Static Force and Moments Fxperiments

Static force. measnrements were obtained with four differant

configurations. Sketches of the modals used during this program

!_ . are shown in figures 2 through 5. All of these measurements were

¢ ety et i ——t 8

obtained with internal water cooled strain gage baiances;

"The c0nfiguration designated 6FN has the same exterior dinen—

;sions ag the slightly blunted conical pressure and heat transrer

D et amran
——

E-‘ o models discussed previously, (8c = 5% R /Rb -n, .025, L = 13 967 in. )

A slightly blunted body of revulution whose radius (beyond the
Juncture or the hemispherical nose tip nnd the arterbody) varies “‘ T

as the axial distance to the 2/3 power was fabricated fro- stnin»”

. less stoel. This configuration will be referred to as 6FX-1 and ,:“' 

is shown in figure 3. At the juncture of the spherical tip vith

e~ ARG IR 3 s 7 e AT
AY

the 2/3 power law afterbody, the radius and slope of the body were .

continuous. The fineness ratio and nose to base radius ratio of

this configuration were 5.61 and 0,025 respectively.

et I TIT A,

R84 L5 QN 5
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Two ducted cone force models were also built to investigate

the pomsibility of substantiaily increasing the 1ift to drag ratio

; ,a\ck:fWPﬁb‘ LA 1)

MV e o m e MR e AR - . . .
‘.‘! bi‘di:: :2 :'::'.":l:.‘.tic:‘.. ANTEPE UUIHA AKGYVIISLAUVUD UTDALKHALTU RIS

8FX«2«1 and 6FX~2-2, are shown in figures 4 and §, respectively.
The conical tip and cowl leading edges on each of these configura-
tions was less than 0.005 inch thick. The inner surface of the
duct on‘cénfiguration‘GFx—z—l was tapered while the inner surface
of tﬁe‘dﬁct on cbntiguratipn 6FX~2-2 was cylindrical., On each

‘ of‘tbese‘configuratIOns; there were four siruts which fastened

the duct to the centeir~body. Holes were drilled in the struts

to squalize the surface pressure in an attempt to minimize the

lizf‘contxibutién of the struts. The base of eéach strut was
fat. R
‘frqr;;llgthe‘above.héntioned"configuritions nbrm#l force,
pitchihg mbmeht, ?1dg‘forée,”qu1bg moment add axial fbrce‘coefficienfs
5:” wérd‘nolsurbd‘yith multicompqnent‘infqrnil‘bilahces. The output
‘otgthqse balances was iecorded‘aﬁd éfcre& on magnetic tabe;‘
“ c. Dita‘Acqﬁisition System |
All of the viessuié,”héat‘transfer and force data obtiined‘
_during the gxperimant; were'récordéd\on‘m&gnétié'tape, The analog-.
digital data recording system in the Hypersonic Tunnel at NOL is
“tuliy‘descfibed in reference (7), The éystem features a 12 channel
cnbtbility ﬁith a dat; suﬁpling rate of approximately 250 pieces
‘of dats per second. During normal usage ten channels are available
tai récoiding experimehtal data and two channels are employed to

record supply temperature and supply pressure. A multiplexing

g i e
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capability of the system allows one to place more than one trang-
ducer on each channel, Advantage was taken cof this feature during

the heat transfer and pressure sxperiments.

- In order to obtzin soms information concerning the flow field

upon the leeward side of a slender cone three different tochniqués
wore employed. |

1. Optical flow visualization methods:

Schlieren photographs were taken during the preéﬁure, heit

tranafer, and force experiments. The schliersn system of the

Hyparsonic Tunnel is a conventionsl single pass system. A contin-
uous light source (mercury arc lamp) provided the necessary -
illumingtion for the achlieren phofogrgphg.‘ The knife edge in

the schlieren system was horizontal for thopé‘exporiuqﬂtsf

2, Pitot Tube Survey: ;| ‘
Pitot tube surveys were conducted 1n‘tb¢vléQngd meridian
 plane of‘the‘cone by travoraing'a‘Pitof tube in the\yértiéii\ca@tcré
plane of the‘vind tunnel, .The Pitot tuSé was nligned with the
flow direction in the uhdiéfurbed't:éo‘lﬁroan;’;Thé pdsitldhkof
the probe and the Pitot preseure were detersined from the outputs
of a gearéd potentiometer and an absclute pfelsﬁré tfapﬂducor -
. respectively. The inlet of the Pitot tube wxs circﬁinr_ahd‘had

an outside diameter of 0,063 inches.

3. 01l Flow Studies:

In order to obtain some information relating to the local

flow direction near the surface of the cone, some 0il flow experié‘

sents were made. A mixture of lamp black and silicona oil was

7
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applisd to the model at random points. Three protractors ware
buiit in order to make angular measurements of the separation

voint at three different astaticns.

EXPERIMENTAL PROCEDURE

The investigation was conducted with a wind tunnel nozzle

fde.ignéd to‘provida a unifore flow 2t Mach 6. The actual Mach

nunbor within t.e test section depends upon the supply conditions.

Average freé stream conditions are tabulated below:

Mach Stagnation Stagnation

Number Reynolds Number/¥Ft Pressure Temperature
593 2.4x16®  147psta  960°R
5.6  4.4x10° 204 pata 1G00°R
6.00 2.1 x 100 1470 psia 1010°R

The Hach number varies by 1688 than +0 04 from the average
value '1th1n the test section. Free stream stagnation conditions

were naasured in the settling chamber upytream of the nozzle throat.

Stagnation pressure wag measured vith an absolute strain gage

‘presaure transducer. stagnatiop tenperature waa ncgsured with a

shielded thermocouple. The voltaze outputs of these instruments

. were recorded on magrnetic tape during the experiments and the test

conditions were detérmined at each instant of time. At the given

Mach number, free stream conditions were obtained from the measurod

stgznntion conditions by assuming that the gas expands isentropically

‘rron the stagnation chamber counditions. Stagnation pressure was

controlled during the teésts by a tunnel cperator who monitored

the dtngnation prassure from a Bourdon gage.
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A brief ocutiine of the test program is given in the table below:

Nominszl Angle

Tyrs = Test vi Alimck im He /Tt Femarks
1, Pra=sure 0% 100 200 200 220, :4"] 5.83 z.4 x io° 9° spsisv®
0%,20°,30°,45°,54° | 6.00 21 x 10% | 0°<vc180°
2. Heat 0°,15°,30°, 5¢° 5.93 | 2.4 x 10% | 0°<ps180°
Transfer b = 15°
T'/TO ~0n5
0°,20°,30°,45°,54° | 6.00 21 x 10% | 49 = 15°
| Ty/To ~ 0.5
3. Force 0° - 54° 5.96 | 4.4 x 10% | contig. 67N
0° - 54° 6.00 | 21 x10° | conrig. 6mN
0° - 54° 6.00 21 x 10% | conrig. 6rx-1
0° - 15° 6.00 21 x 10% | conrig. 6Fx-2-1
0° - 15° 6.00 | 21 x 10% | conrig. 6rx-2-2
4. Plow 10°,15°,20°,30°, 5.93 | 2.4 x 10° | oi1 Flow
Visualization | 40° ‘ ‘ ‘ Experisents
5. Pitot 15°,30°,45° 5.93 2.4 x 106 Leeward Meri-
Survey o g ~ dian Plane

1. Pressure Experiments

The preasure measurements were obtaiped by':irst pitching the

model to the desired angle of attack and then rolling the model

about its axis of symmetry in order to obtain the pressure diitftm

bution in the circumferential direction.

The output ol pressure

transducers connected with one windward and one leeward pressure tap
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respectively, were monitored on an X-Y plotter to minimize the
presgsurs response time errors. All of the outputs from the premaure
TrANSGUCErs wWers recorded On magnetic Tape ana comparec with the
calibration obtained for each test.

2. Heat Transfer Experiments

Beat transfer coefficients were obtained by recording the

t@nporaturc time variation of the thin wall heat transfor wode) and

reducing the data in the ianner descri.2d in ref, (8). Initially

the model was pitched to the angle of attack required for the test
and then covered with a retractable cooling shield. The model was

codlod‘by abrnylné‘liquid nitrogen over its surface until the model

‘to-nOriture reuéhed sone predeternlned leveli., 'Data at two initial

avorace vall to total temperature ratioscr'/T ~ 0,35 & 0. 55) were

obtained in this manner during the high Reynolds numbsar experiuent-

‘(! -6 Re /!t - 21 x 10F), while data at one average wall tempera-
- ture ratio- (T /T, ~ 0.55) were obtainnd ‘during the low Reynolds

number exparinents (M, = 5.93 Re_/ft = 2.4 x 16° ) Once the desired

wall telperature was reached and while ‘the model was still covered

o Qby tho shidld, the rlow wag establishod in the wind tunnel. The

coolin¢ shield was retracted alter the steady flow was astablished -

at the»de-ired aupply pressure, Approximntely 0.5 seconds were

- r.quired for tho lhiold to clear the nodel when the model was

“1nc11ned at an angle of attack of 54 degrees.

Hent tranafer coefficlients were calculated by assuming that the

canvoctive heat tranﬁfer locally increases the body tenpernture and

that the eftocts of conduction along and normal to the skin could

10
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be neglected. A sirple beat balance relating the convective hzat
trapsfer with the heat capacity of the snlid then lnade +a tha

following ordinary differential equation.

dT
d [1 - ¥ om ~h(F - i) (1)
ZrEau U— d-r w e

=

In order to facilitate the data reduction, this equation was
integrated with the assumpticns that the specific heat varies
linearly with the temperature Cw - Cwo {1 + e«T), the equilibrium
temperatur Te‘is the total temperature To’ and that h is indepen-
dent of the temperature,

The result obtained ig:

Py Cy d T }
?;:‘7—1[ m] g<1+eT> ln r"""r - e(Ty - T )} = h

(2):‘

The values of Cy and e for each interval of time were‘deterﬁined“‘
v, ‘

curve fits to available measurements of the specific heat of 17-4PH

stainless steel. These expressions for the specific heat (BPU/1b°R)

are shqwn below:
T€560°R C. = 0.08886 + 0.0577% [ LA 1]- 0.03161 [ r 1]2
woooU ued JI0 “ | 310 ~
T>560°R C, = 0.1043 + 0.00002 T

Heat transfer coefficients were calculated from eq. (2) ftor
several increments of tlme Ifrom the measured temperature variation.
No conauction corrections have been made to the neasured data that'

are presented. The errors introduced by conduction are discussed

in the appendix of this report.

11
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3. 01} Flow Experiments
Tote i Sii weird randcmly applicd to the aurfaca nf the model
before the test. The ccoling shield used for the heat tranafer
expeariments was lowered over the model to prevent the oil pattern

from being dimturbed while mteady flow was established within the

tunnel. These tests were conducted at a Mach number of 5.93 and

at average free stream Reynolids numbers based upen model length

of 2.7‘3 106. Once‘flov was established the ghield was withdrawn

from the model for approximately 30 meconds. After the oil flow

pattern was established, the shield was placed over the model pricr
.to tunpel shutdown. The pattern weos exlﬁined after each test and
: hnkular measuvrements of‘sepnrition iihen‘vere made at threo

‘ltataonl located 5.7, 8. 5 and 11.4 inches irom the tip. The

angullr -enlurennntu are estimated to be accurate to within * 5°%.

f4, ‘Pitot Tube Survey

Pltot tube’ surveyl Vere conducted in the most leeward maridian plane

: ot an incliped slightly blunted alender cone (6 = 5%, R /R - 0.028)

at a Hach number = 5. 93 and at average free stream Reynolds number
per foot = 2.4 x,lQ . Thase‘surveya vqre obtained while the model
vas 1nc11ﬁod at aangles of nt,aék of 15', 30° and 45°. Tﬁe proba
vll travarued perpendicular to the ftree stream flow direction. ' The
diltanca of the tip of the Pitot tube from the tip of the cone is .
tabulatcd below for each angle of attack.

Diltlnée from

o | ‘ cone tip
15° b 7-5/16"
30° , 7-1/16"
i5® 7-1/16"

12
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The output of the Hotentiometer which indicated the lipear
displacement of " he probe and the output ot the pressure lTransducers
which measured the Pitot pressure were monltored on an x-y recorder
Aand recurded by the data acquisition system on magnetic tape. The
model that was used to obtain the surface pressure distributions

waB also used during the Pitot tube susveys. The pressure model

was aligned sc that one row of pressure orifices was in the leeward

meridian plane. These pressures were also recorded during the

Rt R T DRV L]

gurvey, The orifice just upstream of where the Fitot tube touched

the cone, varied by less than 5 percent during the surveys. One

LR L I N

Pitot tube was used for all of the surveys.

[

5. Force and Moment Experiments

The force experiments were conducted with four different

configurations. Average test conditions for each configuration

are tsbulated below:

Configuration M Re

e <dom A TR | T . LA e M e P it ™

- -l
6FN 6.00 5 x 10°
6FN 5.96 5.2 = 10°
6FX-1 6.00 25 x 10°
EFX-2-1 6.00 39 x 10°
6FKw-2=2 6.00 26 x 10°

Force data ware obtained from the output of calibrated nulf«
component strain gage balances. The output of the balance was
continuously recorded while the model was pitched through a specified

angle of attack variaztfon. 4 tare run was conducted for each test

to account for the effmcts of the weight of the model., The balances

were calibrated by statically loading the balance with weights at

i3
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dirferent stations in the manaey described in roierence(9. The
experimentul uncertainties in the normal force coefficient, axial
farce caufficlant

nd cantar H5F mwoaowss
a cantar OH1 Pprozz

Configuration ACN ACA AXc .
. Cone - GFN +0.02 +0.006 +0,005
2/3 Power Law - 6FX-1 +0.02 +0.006 +0.005 .
Ductad Cone - 6FX-2~1 +0.04. +C¢.0190 +0.010
Ducted Cone - 6FX-2-2 +0,04 +0,010 +0.010

- The halances were calibrated to account for the deflection
1nduced by the normal loads. The measured angle of atlack vas
corrected to account for this deflection. The maximum uncertainty
nssogiated w1th the angle of.attaci neasurementg is estimated to
be 10.30'.  Bhse‘prassures were measured behind‘the”cdne‘and 2/3
pbyér law body by running‘l/s" 0.D. stuinless steel tubing §long
the sting to the base of the model.

The presanted drng data includes base presaufe‘drag.

RISULTS AND DISCUSSION

1. Pressure -easuroienté‘and 0il flow experiments

Thﬁ‘measured surface pressure distributions on & s8lightly blunted
1nclihed cone fof the two test conditions [Mw = 5,93, Re”'L = 2.8 x 106
and ¥ = 6,00 Re-,L - 25 x 106] are presented in fipares 7-19, The
pressure distributions along different conical generators are shovn in
figures 7-15 while the circumferential pressure diétribution‘at a station
4 inches from the tip 1s shown in figures 16-19. The circumferential
date ary compared with the results of calculations based upon'Newtonian

flow theory. These Newtonian calculations were obtained from the formula

14
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ggl_ 1+ yNi[COSﬂ Sinec + Sinn Coch Coam]2 (3)

The Newtonian theory predicts the measured pressure distribution

to within 10 percent on the windward side of the cone for o < 60°.
The agreement between the measured surface pressure distribution on

the windward side of an inclined cone in a hypersonic flow and the

Newtonian theory has been observed previously by several investigators

(references (10)~(12)). It is notid in figures 7-15 that the

pressure distribution along the windward generators shows virtually

no dependence upon the distance from the tip df the COne. The
invariance of the pressure distribution with respect to distance
would certainly be the case if the flow wera conical.

In the leeward meridian plgne, it is observed that the surface
pressure distribution varies with Reynoldsa nﬁmber (tigures‘zouzz).
One explanation for this observation is that the variation of pres-
sure on the leeward side of the cone 1s associﬁted with & weak
interaction between the inviscid flow and viscouz flow in a fashion‘
similar to that which occurs on sha:p‘flat plates, wedges and CONgsS,

It 1s also noted tbhat a minimum in the circumferéntial static

pressure distributions occurs 2t an azimuthal .ngle of approkimately

125 degrees for both the high and low Reynolds number data (figuras
17 and 19). Angular measurements, which were obtained during the
low Reynolds number oil flow pattern experiments (figures 23 and
24) iadicated that tlow separation occurs at approximately 135

dogrees (figure 25),

L5
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To within the accuracy of the present data (+5°), flow separation

aAppears to occur alcocng a conical generator. The appearance of a
genaration line very slocs 40 a lacal minimuam in prossurs is gon
tent with the data presented by Avduesky and Medvedev (ref. (13)) and
Traci (ret. (11).

In addition to measuring a separation line at approximately 135°,

& second sebaration line was found near the leeward meridian plane at

angles of attack‘Below 20° (figures 24 and 25). The oil dots in the
region between these two separation lines remained essentially undis-
turbed. During the oil flow experiments performed at angles of
atttck of 30° and 40° all the dots of oil remained stetionarf‘beyend

135° " ' The shear which disturbed the oil dots near ‘the leeward

| meridian plane at moderate nngles ot atuack ls associated with a

| locally attached rlow.w Additional efrects associuted with this rflow

can be found 1n the heat transier data, the Pitot tubeg eurveys and

the schlieren pictures to be presented in subsequent seetions.

2. Heat Transfer Experiments

- The heat transfer data are presented in figures 26-36, For
convenience, the measured duta hava been nondimensionalizod by
propegties,in.the undisturbed free strean. |

u,v‘Zero Angle of Attack Heat Transfer Distribution

The measured‘heat transfer distribution along the surface of
the unyawecd cone are preseeted in figure 26 along with calculations
basid upon the results presented in reference (14) for the laminar
heat transfer distributibn along sﬁarp cones at zero angle of attack.

‘Iuspection of the zero angle of attack heat transfer datr

indicates that boundary layer transition occurs over & range of

18
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WGmSSIs (wAaPDou upuwn lengoea Irom the Tip) of
106 x 106 to 14 x 10°. The calculated variation of local Revnnldsz
numbers based upon momentum thicknese and distance from the tip
are presented in figures 27 ard 28 for the conditions corresponding
- to the larger ratioc of wall temperature to stagnation temperature.

The calculated local Mach unumber dist-ibutiins are shown in figurc 29.

S YRR LI YOI - Mg oy Wi o AITY 4

These results wera obtained from calculations of the luminar

boundary layer growth on a slightly blunted cone by the Momentum

Integral technique as described by R, E., Wilson in reference (16).

At zero angle of attack, the calculated local conditions at waich

transition occurs are tabulated below:

ii'-r‘(ibh::ﬂ]f&;i"m(;ﬂl«'fn’ . ‘: b iR

10 x 10° <Rre_ o < 14 x 10°

sS
4.45 < Me < 4.75

)

5.4 x 105 <Re_ . < 9.5 x 10°
e,S

2

950 < Re.’a < 1250

For these test conditions, the eftecfs'qf wall temperature
introduced ch#nges no greater than 4 percenf in the culcuiated

properties. Furthermore, the present v.riation of wall temperature

P T e T

did not introduce any large ch#nges in thq logatiqn of the région ‘
where boundary layer transition 6ccurs at zero anglé of attack,

b, Heat Transfer Distribution on the Inclined Cone

Data which is representative of measurements obtalned with &

slender slightly blunted cone inclined at large angles of attack

are presented in figures 30-36. The data obtained aloag the most

windwzrd streamlive of the cone are presented in figures 30 and 31.

17
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The laminar heat transfer glong this streamline 1s compared with
the results of sn analysis by Reshotkc and Beckwith (ref. (15)). In

rerereénce (15). the laminar heat transfer coefficient along the wind-

ward straamline nf a yawad ecvlinder i= giwven by thg cguaticn:
k du_.u_
0.46 ey *®
h "T-—LT--—-! (e'> Pr ‘/P 13 a——
A aw ~ w My Vprel,0 ¥ u

This result can be put in the following form from which the lawinar

~heat transfer distribution along the most windward streamline of an

indlined cone may be calculated:

‘ o - | -4L54 Ty~ aw wulp - du, Sian+B’T
T L L CH J,r *(5-) 3 s 3% TS

(g:)a' 1 + y%[ cosa S1n0_ + Sino Cosf_ |

d ‘ . ‘ 1
2 3 - by [+ P st T B - iy
: ./,

- The quantity (G;)pral is a function of the wa11 tQmperature,

the free stream Mach number, and the angle of yaw of the most wind-

" ward streamline. This parameter was obtained from calculations of

Reshotko and:Beckwith {ref. {(15)) of the laminar flow over a yawed
infinite cylinder. |

The local Mach number, which is needed to calculate the
‘ T =T

dimensionless temperature ratio, TﬁL:—Tﬁ!—), was determined from
‘ w

18
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the Newtonlan expression for the surface pressure (g-) and the
© o

measured shock wave inclination with respect to the free stream.

Fur ihe angies or attack at which these experiments were conducted,

A SRS, W R G,

boundary layer trapsition along the most windvard streamline occurred
closer to the tip when the model was inclined at an angle of attack
theu it did when it was at zero angle of attack. - At angles of attack
greater than 30°, boundary layer transition occurred at a Reynolds

number based upon free stream conditions of approximately 2 x 106.

At the present time, not enough data has‘beén obtaihed to
demonstrate conclusively the effects of wall tempefature and free
stream ﬁnit Reynolds number upon boundary layer trans;tioq on a
highly inclined cone, The present data do appear to 1ﬁdicate that
coolidé the wall tends to stabilize the léminar‘boundary layer
(figures 30 ahd 31). This is evidenced in the data obtained at 20°
and 30° apgle of attack. At an angle of attack of 20°, the free

Hstrezm transition Reynolds number 1ncréased from‘appfdximately

6 to 4 x 106 when the ratio of wall to stagnation temperiture

ﬁx; 10
wgé decreased from 0.62 to 0.35, The data obtained at an angle of
attdck of 30° indicate agreément with lamipar calculations of the
‘ﬁheit transfer rate at a2 wall to stagnﬁtlon temperature ratio of

0.33 and 2 free stream Reynolds number of 1.6 x 105, The data point
obtéined at an angle of attack of 30° and at an average wall tempera~
ture of 0.57 is about 50 percent greater than that obtained.at this
angle of attack at the lower wall temperature ratio.

An attemri wias made to correlate the messured turbulent heat

transfor distribution by fairing a curve of the form S, Re?"2 = constaut
[ 4
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turough the data for each teat condition. The curves obtained for
each test condition are shown in figures 30 and 31 and the constants

are tabulated below,

LV 1
Curve " !‘w/To St'Re_
26 0.32 0.101
20 0.60 0,089
30 6,30 0.134
30 0.57 0.119
45 0.33 0.159
45 n,62 0.151
- 54 G..37 0.148
54 0.66 0.147

The circumiecrentixl heat trausfer distributions at four stations
along‘the cone are shown in figures 32-36, The measured Stanton
hﬁmbers‘hlve been normalized by‘the sttgﬁation streanline Stanton
numbef‘(tt the gifén‘neynolds number) as ca}cultted from the resuits
presented in references (14) and (15). The duta‘piesehted in figures
32, 33; and 34 were obtained at anglés of attack of 15°, 30°, and 54°,
réspeﬁfively af*; free stream H;éh number of 5.93 and an average
stream Reynolds number per foot of 2.49 x 106, ‘For these cénditions,

trans;tion did not occur on the windward streamline within the

~interval where the‘measufgments were made., The data presented in

£.gures 35 and 36 were obtained at mngles of attack of 20° and 54°,
réspeétively, at a free stream Mach number of 6,00 ind at an nverige

free stream Reynolds number per foot of 20.2 x 106. The measured

‘cifcumferential duta for these coanditions have also been normalized

by the stagnation streamline Stanton number which one would calculate
by assuming that the flow was laminar (reference (15)).

In comparing these results several features are readily apparent:

20
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(1) With the exception of the data obtained at an angle of

atiack oI Zu~ (Ilgure 35), all of the circumferential heat transfer

distributions obtained show a local maximum along the ctuonation

el

streamline. The heat transfer data obtalned at an angle of attack

of 20° (Re /ft = 21 x 10°) indicate that at the first three stations

(x < 2.50), a local maximum in the heat transfer distribution occurs
between 15° and 30° from the windward meridian. At stations further
downstream (x > 6.25) a local maximum was measured along the windward
o meridian,
4 One plausible explanation for these results 1s that for u given
angle of attack, transition occurs closer to the tip along generators
that are further displaced from the windward gehera*or.‘ Consequently,
the flow along the windward streamline might well be‘laﬁinar while the
: flow at the same axial location but at a differeat lzlmqthaletation

. will e turbnlent. However, when the flow at a given axiallstﬁtion‘
% was either compietely laminar or dbmpletely turbuleht, 4 local
maximumn was‘meaSured‘along the windward generator, “

(2) 1In addition to the 6Bservations‘cohderhing the nature of

the heat transfer on the ﬁindw;rd streamlineb it was zenefslly noted

(tigures 32-36) that the heat transfer distributions reached‘their”
lowest values at appioximately 120-135° from the wiudward meridian

plane. At angles of attmck equal to or larger i{han 30°, (figures

TRE R[S T R S

33, 34 and 36) the variation ip the circumferential heat transfer
distribution beyond 135° from the windward meridian was negligible.

At angles of attack less than 30° (figures 32 and 35), the heat

e

transfer distributions show both a local minimum and a local maxi-

b mum on the leeward side.

21
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Flow sejaration on the leeward side of the inclined cone is one
mechrnism that could provide an explanation for these observations.
As noted in a previous section, surface oil flow studies provide some
ipICOrmAtion concerning the exient OI the sSeparatea 1iow rieid upon
the leeward side of the cobn®. 7he measurement of a minimum in the
heat transfer distribution between 120° and 1:35° is ccusistent with
the observation of flow separatiocn at upproximately 135°. The
increase of heat transfer pear the leeward meridian plane at angles
of attack of 15° and 20° can be attributed to the fact that there
is a region o: attached flow on the leeward side near the plane of
symmetry. The oil flow studies indicated that this region extends
approximatély 16~15° from the leeward meridian plane. The appearance
bf heat transfer digtributions in the plane of symmetry on the

leeward side of an inclined come which are characterized by a local

maximum in the azimuthal direction is consistent with the results

obtained by Tracey (reference (ll)) and Fitch, Morris and Duckin

‘(iétérgnce (17)), with slender cones at angles of attack between
10"J and 24°, |

3. Flow Field Surveys and Flow V;suﬁlization

In dddition‘to thé pressure and heat transfer measurements,
u 1imited series ot Pitot tube‘surveys were obtained in the most
leeward mer1d1an plane of the slightly blunted cone., These measure=

ments were obtalned at 2 Mach number of 5.93 and at an average free

. stream Reynolds nuwmber per foot of 2.4 x 106. The results of these

measurements are presented in figures 37-39. (The probe jistance
that is referred to in these results is the distance between the

surface and the bottom of the Pitot tube.)

22
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Analysis of the Pito! surveys along with schlierern p Htographs
i85 pRALLIGULAILY uPTiul siuve a suliliveeon pavivgrapid is sensiitive Lo
the density gradient while the Pitot probes measurement varies approxi-
mately directiy with pu2 at Mach numbers above 2. The schlieren
plctures, presented in figures 40 and 41 were obtained during the
Pitot traverses while the model was at 15° and 30° angle of attack.
The schlieren pictures presented in figures 42 and 43 were obtained
during the high Reynolds number force experiments when the model was
at 16.2° and 27.5° angle of attack. The variation of the sensitivity
of schlieren system with the change of density within the tes’
section is apparent. |

Three regions between the shock wave and the 1eewgfd suriace ‘
of the cone can be distingwished‘in‘the‘schlieren photqgraphs and the
Titot tube éurveys. The large gradients in the Pitot pressure
survey occur a% approximately the‘same position as the density
gradients that were observed in schliqren phofographs. Thése résu1ts
indicate that large‘density gradients exist in the levward meridian
plane. Withdut‘a total temperature distribution, it is difficult
to determine solely from the Pitot tube.surveys whether these
gradients are due to viscous or inmviscid phenomena‘ussociatequwith
the‘flow around au inclined cone.

The concurrent exaumination of schlieren photographs amd Pitot
surveyr algo provides some useful information comcerning the flow
field near the body on the leeward side of the cone. In schlieren
photographs that were obtained at angles uf attack less than 25°

(Re,/ft ~ 21 x 106) a region was noied near the base of the cone

(sae figure 42) which appears like a Prandtl-Meyer expansion fan

23

‘Tuuﬁﬂﬁﬁﬂﬁﬁﬂﬂgﬁg@ﬁ,




1133

EEF R L R T
T ———————ry - T L YR .~ SRR

NOLTR GB-52

that one observes on flai based bodies in a sup rsmoni flow. The

Ditnt euruaser snondiantnd 4 0 mosrd Pmmanend e

-
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angle of attack of 15° indicates s Pitot pressi're of approximately
4 tines as large as the static surface pressure when the probe was
touching the surface. At angles of attack larger than 25° the

Prandtl-Meyer like expansion fan on the lseward side was no loager

observable ih the schlieren photographs {(figure 43). Furthermore, )
in the Pitot tube surveys conducted at angles of attack of 30° and

45° (figures 38 and 39), the measured Pitot pressure differed by

e 7 MR

less than 10 percent from the measured static pressure at the

surface of the cone. Thése results in conjunction with the heat

W transfer and oll experiments sre indicative of the fact that there

'ff;‘ is a region of attached energetic flow near the leeward meridian
plane of u slender cone inclined at a moderate angle of attack

(< 25°).

‘4. Static Force and Moment Measurements
| ;The dafu obtainéd during the force experiments are prasented
’  § . 1n‘fi§ureé %“4-53 .
| i‘ a. conriguratipp GFN - Slightly blunted come (8, = 5°,
ﬁ ”: R /R = 0.025, L = 13.967 inches)
. Ia figure 44,vtha ﬁeasured normal‘aud-axial force coefficlentsn
for ah inclined slender cone are presented and compared with
f ﬁ calculations based upon Newtonian theory. The calculations were
| obtaiped from the results tabulated in referemc.: (18). These
*mhé calculations were obtained by assuwiog that in regions exposed to
| the ineidenf.flow, the surtace pressure distribution is given by

ﬂ?“¥ the rﬁldinuahip Cp - ZCoszn {where " is the angle between the

l;t”_; “‘ ) i 24

o ! . EADEYS " . " .
"o " o [ ' ! '




e T TR g B e L LU TRl e e

* NOLT'H U452
incident free stream and the normal to the body surface). in these
calculations, the surface pressure 1s assumed to be the free strean
STAT1C pressure in repions thal were shielded from the incident flow,
In addition to comparing the measured normal and axial force

coefficiunts with numerical calculations based upon Newtonian theory,

Lx e W oke wmy -

the measurements are compared with some previous exporimental data
(reference (1%)) obtained with a sharp 5° half angle cone at a Mach
number of ¢.9 and a Reynolds number baszed upon model length of 2.3 x
106. The asreewment between the measured normal force coefficlents
and the Newtonian theory is quite guvod.

In order to assess the comparison between the present axial

force coefficient measureneuts with those presented in reference (19),

one should note that the total axial force coefficient is:

CA ) LASkLn * LAFore v cAane
Friction EBody

The present data include all three contributions to CA’ whereas
the data of reference (1Y) include ouly the first two terms. By
calculeating the conilribution of the base to the axial force coefficlent
from the measured base pressure shown in figure 45, 1t can be shown
that the discrepancy apparent in the axial force weasurements in
figure 44 is due primarily to the contribution of CAB]SG'

A calculation was made in order to assess the contribuiions
of skin friction drag, pressure drap, aund base preossure drag to the
total drag coefficlent at zero angle of attack. /Pressure dirag znd

skin friction dragr of a slightly blunted cone at zero angle of

attack were calculated using ithe Momentum Intepyel method described

T R L
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The base presaura diag wae dsterminad from +the

The contributions of each of these component:

are tabulated below along with the measured drag coefficient at zero

angle of attack,

transition is assumed t0o occur in the calculations.)

(Re ty 18 the free-stream Reynolds number at which
?

CASE I I III IV
Po 294 psia 1294 psian (1470 psia]l470 psia
Re, ;. sx10° | sx10® | 25.10% | 25x10°
]
‘ 6 [ 6
Rew pr « 3.5x10 6x10 10x10
¢, (Calc) 0.023 0.023 0.022 0.022
Pressure
¢y (Calc) 0.008 0.016 0.014 0.013
Skin.
- Friction
Cé“°“““’°d’ 0.032 0.032 0.036 0.036
Basa ‘
Pressure
éD “Cp K 0.063 0.071 0.072 0.071
Pragsure Skin Base
Friction Press.
Cp 0.073+ | 0.073+ | 0.079+ | 0.079+
Measured 0.000 0.006 0.006" 0.006™

In view of the experimental vncertainty,

the agreenent between

the measurements and the calculations Is considered to be satisfactory.
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Lift and drag data are presented in fipgure 46, A maximum 1ift
to dyasr vratio of 2 A4 wnn mSaSurcd 107 Lhe wune al an angle ol ATTACK
of 10 degrees. A maximum 1ift coefficient of 1.88 was measured at
angle of attack of 4383°, For these test conditions; the effects of the
variation of Reynolds number are negligible.

The measured center of pressure locations for the conical
configuration and the three other configurations to be discussed
later are presented in figure 47. It has been observed previously
(references (3) and (4)) that sharp circular cénes have a minimal
variation of the center of pressure. This iniariance of ‘the éenter
of pressure is associatéd with the conical nature of the inviscid
flow field around a circular cone. The location of the center df
pressure of an inclined sharp circular cone in an ideal g#s‘is given

‘by the relation Eﬁf_ """"E"_ as long as the shock wave is attached

3Cos 9
the flow is locally supersonic and viscous effects do not. alter the

pressure distribution or introduce appreciabie shearinc moments.

At large anrles of attack, the measured center of pressure logation‘
of the slightly blunted cone lieé #head‘ot the theoretical value

for a sharp cvircular of the same71éngth. In the results of
reference {20), it was noted that the center of pressure locationﬂ

of sliightly blunted comnes at large angles of attack can be adequately

estimaited by the following equation.
2 rl- (Elbl) Cos 8, R, (1-Sing )

sc:os"ecL, - (2
1 : .
ﬁ‘“‘(l_srnfc“) (%)

Xcsp
L
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In figure 47 one observes excellent agreement between this
manation and the masaurad data .
b. 2/3 Power law body (Rn/llb = 0.025, Fineness ratio = 5,61)
Force measurements were obtained with a slightly blunted 2/3
power law body at a Mach numher of 6.00 &nd at an average free
stream Reynolds number based upon model length of 25 x 106.

. Normal force and axial force coefflicients are presented in
figufe 48 ~long with previous experimental measurements obtrined
with a 2/3 power law body of fineness ratio 5;55 (referesnce (1)) at
a‘Mach number of 10.03 a. a Reynolds numbar based upon free stream

conditions and the‘length of the model of 1.4 x 106. Calculations

‘baséd upon Newtonian flow theory are alsc presented. As was noted

in the case of the slender cone, Newtonian theory adequafely
predicts the ncrmal force coefficients.

The axial forcé_poefficient at zero angle of attack was

-measured to be 0.075, ‘As 1in the case of the sleudér cone, base

drag contributes a substantial portion of the total drag coefticlent
ofup slendei'body at Mach 6. The difference between the measured

txitl‘forcé‘qoefficients and the experimental data presented in

‘reférence (1) 1is due primarily to the differences in the base

drag at M = 6 and M = 10,

Lift and drag are presented in figure 49. A maximum 1lift to

‘drag ratio of 2.63 was measured at angle of attack of 10°., A 1ift

coefficient of 2,20 was measured at angle o' attack of 49°.
- The measured center of pressure positiom is plotted in
figure 47 for the 2/3 power law configuration. It is noted that

over an angle of attack variation from 5° to 50° the center of

28
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pressure varies by approximately 2.5 percent of the body length.

s DuGied Gune CUNILEUTATIONS (DEFA=Eml, GEFX=ZwZ)}

ol MR W R e i
et B e e e

Force measurcments were obtainod with two ductad esone ~sonfipura.
tions (fipures 4 and 5). The center body of each configuration was
dimensionally similar. The duct of the first configuration (GFX-2-1)

was positioned so that a straight line drawn between the point of

maximum thickness within the duct and the vertex would coincide with
the shock wave near the tip of the cone at zero angle of attack at
M, = 6. The duct of the second configuration (6FX-2-2) was positioned L

such that the 1lip of the duct would intersect the shock wave cmanating

from the vertex of the cone at zeroc angle of attack.

‘The experiments were conducted at a Mach number of 6,00 and at
average frée stream Reynolds numbers based upon model‘lenzth‘(disfghcg
measured trom the tip) »f 30 x”;o6 and 29 x 106 for configurations
6FX-2~1 and 6FX-2-2 respectively. ’

The measured normgl force and axial force coefficients of these
configuratidns are presented in figures $50 and 52.. (The reierénce
areda in all of‘the measured force coefficlents is the maximum‘crbss‘
.iectional area of the center body.) |

A fair estimation 61 the‘measured normal force coettigient‘ot
an axisymmetric body surrounded by a thin duct in a hypersodic flow

was provided by the following result:

A L.D ‘
Capture + 4 DD Sinzq (6)

. C,, = 2 Sinn Cosna
N Ajer. 3 Aget.

The first term in the above expression is obtained by agsuming that
a2 thin cylindrical shell captures all of the mass flow that is

iuvtercepted by the frontal area projected on a plane normal to the
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free gtream. The {low is assumed to be turned through an angie n,

byma  de B o ol s e W o o — A
-y wART,  LinANs W@ AL MMT A VLT PO W

THFwARE Tia Ouph wlav augle T, AL L
assumed that the normal component of the momeptum in the free streanm
is transferred to the body while the tangential component 0f momentum
i8 consBerved. In addition to the generation of a force due to a
nomentum exchange within the body, there is also s contribution associa~
ted with the interaction between the free stream and the outer surface
of the cylindrical shell., The second term in the above expression is
the normal force coefficient for an inclined cylindrical section as
detarm;ned from Newtonian thgory (reference (21)). The above analysis
provides a useful means 0; estimating the‘normil force coefficients of
these confipurations. | ”

Thg ﬁeasufa§ 1ift and drag‘data are presented in figures 51 and

53, It is notgd that while the drag ¢defficient of these éonfigura-

‘tions are betWeenhz and 3 times that of the simple bodies of

revolution described earlier, the maximum lift to drag ratios of.
these configurations at Mach 6 are approximately 20 percent to

50 percent aigher than the measured lift to drag ratio of the simple

. bodies of revolution.

The measured qenter of pressure variation is presented in

figure 47. (This data is non-dimensionallzed by the length between

the vertex of the cone and back of the duct,)

CONCLUSIONS

An experimental investigétion coneerning the merothermodynamic

characteristics of the flows around highly inclined bodies of

ravolution has been conducted in a wind tunnel &t a nominal Mpch
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number of 6., From this investigation, the tftollowing conclusions are
made concerning hypersonic flow around inclined axisymmetric bodies:
(1) The pressure and force measurements have verified the
adequacy of Newtonian theory for the prediction of nyrmal force
coefficients and pressure distributionms on the windward surfaces
of inclined slender axisymmetric bodies af large angles of attack,
{(2) The heat transfer measurements have verified the aéequacy

of the theory of Reshotko and Beckwilith for predicting laminar heat

transfer on the most windward side streamline of slender “odies Llnclined

at large angles of attack,

(3) The flow was found to separate on the leeward side of the
inclined cone (at an azimuthal angle of approximately 135°) in
a région where an adverse circumferential pressure gradient ekistst
A vegion of attached flow was observed near the leeward meridian
plane of the 5° half angle cone at angles'of attack beiow approxi-
mately 25°, |

(4) The pressure distribution on the leeward side ot‘the cone
was found to vary with the Reynoids number based ubon the‘distﬁncq
from the tip of the‘éone.

(5) A relatiﬁe maximum wus measured.in the heat trahster
distribution orn the leeward side of the cone at moderate angles
of attack,

(») The measured maximum lift to drag ratic of the ducted conicai
bodies was as much as# 50 percent greater than the maximum 1ift to
drag ratio of the simple bodies of revolution for the specific Mach
number and Reynolds numbior conditions of the pregent tests., The
increase 1n the 1lift to drag ratio is reslized rolely because of the

increase in lift effectiveness of these configurations,
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TABLE I

Wall Thickness (inches)
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APPERDIX
Heat Transfer Data Reduction

The heat transfnr data has been determined by assuming that each
element of the model acts like“a calorimeter. The temperature gradient
normal to the surface, and the heat lost due to tangential conduction
have thus been neglected Normal and lohzitudinul h;at tranafer are
separately cénnidered in this appgndix in order tb provide a means
of estimating thé_errota assoclated with these o;tectd;

(1) Correction for nornil temperature gradient:

The hgatttrgpsfér,datu was determined b& equating the rate

at which heat is -tbr;drwithin,each element of the modsl with the

convective heat tranifor rate to the surfacq:

. . - dT
. ' . w
“b'(T, = T (ds) = p ¢ (av) ==

This squation can be readily 1ntc¢ruted 1f'h', Py’ Gy and

‘:(gg) are assumed to be independent of temperaturs:

h'df %"
T(r) - T, ~ K \qZ2/
—T:-:-T—-".G
e

whers o, - k/p'c'

d = dv/ds
[
The measured Biot number (EEE) is then determived from the

neagured temperatures at two different timey and is exprasssd by:

A-1
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. Solution:

NOLTR 68-52

h'd —~ z ) j,‘ l. E_T(‘t.! ]
- CTe-TLOd (1)

wvhere At = Ty = 1

Associated with the dsta reduction in this manner, is the

assunption that there is no temperature gradient across the thixn

.skin. Conssquently, one assumes for a thin skin heat transfer model

that the knowlodge of the distance of the thermocouples below the
surface is not necessary for the data reduction. In order to aszeso
the accuracy of this assumption, the rc-ulf- of calculations of the
tesperature distribution vithin an tofinitely long thin flat plate,
1n-u1;t¢d;on one surfacs and subjectod to convective heating on the
other -u:r-co_hiva beea analyzed in a manner similar to that presented
in refereance (23).

‘n_u solution for the temperature distribution withian the
convectively heated plate ig given in reference (23) and the results

are quoted below:

x ("/QH_T.‘) -Te ‘2" 2 Sin(And) Coaldud ) e'e"—‘li%z
T2 - Ta. mre @Qua) ¢ Sin(dnd) Cosldd) '

where .(@nd) fan(nd) = %

The mbove aolution shows that the temperaturs does vary across
the slab of finite thicknewss (d). It should alsoc be noted that for
vanishingly small values of the Biot number [(hd/k) << 1] and Fourier

A-2
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o
numoers (amf/d") larger than approximately 1, the above expression tor

the temperature distribution closely approximates that obtained by

balancing the convective heat transfer with the stored heat transfer.
(The dependence of the temperature distribution upon the distance from

the surface disappears for small Biot numbers as tlﬂ(\ld) ~ uxn(xld) oy

(3,d) and cos(d g) ~ 1.0.)

In order to assess the accuracy of the results obtained from

equxfion 1l a simple iterative procedure was smployed using the above

exact solutién:

(1) A Biot number (hd/k) and a time increment (auAT/dz)-vere
assumed to calculate the temperature wvariatioo with respeci to time
at any point of the flat plate.

"n'1 % T
(2) The tomperature rt txo Fourier rumbers —y— nd u-!m)
d a

were than substituted into equation 1 to calculats the Biot number
(Eéﬂ) over that interval ¢f time.

(3) The difference between (L’) and (h) is the srror incurred
by neglecting the temperature gradient normal to the surface oi the
flat plate.

The results of thewse calculations are preasented in figures
(A~1) & (A«2), in the form of calculsted Bio:t number veraus Fourier
vimber for different increments of the Fourier uumber., It is noted
from these results that for Biot numbers lewss than 0.5, the Biot

nunber determined from the calorimeter assumption is independent of

the point in the surlace where the messurement is wade if the tempera-

ture data obtained before a Fourier nuamber of approximately 0.5 1s
neglected. It is also noted that the error batween the Biot uumber

determined from the cawlorimeter assuwption (h’‘¢/k) and the actual

A
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Rist aumbver b ‘d/k iucreases with increasing Biot number.
if one congiders the rirst two terms in the infinite Beriles
representations for the temperature distribution (equation 2) and

the tangent function, then it can be shown by considering equatious

(=d

number is given by:

hd. 3_[(_; 'ff'_*')z"l @

The relative errors (defined as —:E- and EZ%—) introduced into

the measured heat transfer coefficients by reducing the data by the
calorimeter method (equation 1) and by the calorimeter methaod with a
corraction (equation 4) are presented in figure (A-3) as a function
of the actual Biot numbera. | |

It is noted for a thin flat plate, that the error in the heat
tranafer coefficient which is 1ntrodﬁcod by udquming that each element
of the plate scts like a calorimeter is approximately 10 percent at a

Biot number of upproxﬂlu;ﬁly 6.3. For the present series of tests,

the measured Biot numbe. did not exceed 0.10 and the maximum error

to be lems than 3.5 percent,

VBy soplying the single correction (equation 4) which accounts
for the fact that d/k # 0, the error can be reduced to less than
3 percent for Bi < 0,5. '

(2) Tangential conduction corrections:

As noted previously, the presented data has been reduced by
agsuning that emch element of the body surface acts like a calorimeter.,
Losses associated with hest transfer by conduction arcund or along the
model, or down the thexrmocouple leads have also been neglected.

A-4

a-locisf;d_vith the uncorrected calorimeter approximation is estimsted
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Since the rate at which heat is conducted across a solid surface
varies inversely with the cross-sectional area, the heat transfer
model was instrumented with 0.005 (inch) diameter thermocouple wire
in an attempt to minimize thermogoupls 1Gsses.

In order to assess the errors introduced by heat conduction
around or along the model, an analysis similar to that presented in
reference (24) was performed for a thin conical shell subjected to
convective heat transfer on one surface and insulated on the other.
In order to simplify the analysis, the temperaturé gradient normal

to the surface of the cone at each station, and any variation of wall

thickness along the cone have been neglected. A sketch illuatruting

the important dimensions of the problem is shown below,
' da

The differential equation and boundary conditions axe given

below for an infinite thin conical shell which is imsulated on one
iv
side. aT - il- a:_f'.. !l
B cud o) + LR+l 36+ e e ]

where: d= [d¥)= d'[,. Y ]
Boundary conditions: (%) [ Ze tanbe
(M Tro T=Te (r¥)
2 T »o 'ﬂ:h(ri")

A-H

B oD e L

el 3 1%,

i

. . -
b o & o g e mh e
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The above differential equations and boundary conditior 5 can

be expressed as follows,

~hd &.T* & - ::n_.,.ar:‘a.L;m 1 2@
2 T 3y U LITRTAGEY s Spnld

Wiery &= T-". ) “t,: r-%‘: 5 Z:: ‘/Z\‘

Ti:~-Te

. I WP G N i ¢ Rl Sy A P R

Boundary conditions: (1) ¥z o0 O= 6"(1,?))'(2) X»o h:)\(" ¥)

In order to obtain a solution for 6, it is assumed that 0 is

expressisle as a series solution of the form:

)
SN, Bz &1, B2 + AuD*E RN+ .. +ET) Oyt
It 1s assumed that

| 381 258 2 |6 ot 3R SR

N~
| (tn?#)" 6] =< | (T Gl
DGQA;Q‘GL‘Q
After substituting the series sclution into the partial difterential

S ‘aquation, collecting the coefficlients of the same powers of amT*

and equating them to zero, the following differential equations are

° r i gl
RS At A
' : ; : ’

obtained:
' o

} ) i }
: hol of ¥ B¢
.. Oy, L i!ivﬂg 28y +
LA = T AL S
The initial conditions for thess equations are given by:

W ¥-o G:8; , BysO Ao .
(»w Xro h=hly, )

The physical interpretation of the series solution can be.

obtained from an inspection of the series of differential equatlons.
The first term in the series expansion repfesents the solution obtainable

A-6

e G A ——— o ——— {rmnt < - . . - A ———" AT .




NOLTR 68-52
from the assumption that each element ects like a calorimeter which is
insulated with respect to all elements adjacent to it. Any variation

in the initial wall temperature distribution, or heat transfer coef-

P RIS TR TS

&Ce will ls&d 10 lhe esilabliviment of itemperature
gradients and therefoure heat conduc;ion around or along the model.
The terms associated with these temperature gradients appear as
forcing functions in the differential equations for the next tefu

in the series expansion. If one considers only the firgt two terms

in the series, the temperature distribution can be expressed as

(3T w2 2200 28,
fe' )‘-Ia"r” ; (5 ‘e 3P
<

- Sul( 4 *)a—:)[ s—.e‘: 3 ,-:-,,,,,,:,x AREE L]

"ﬂf( e ) CI-T)[ + z'-s:n‘ﬁ )J

The heat transfer coefficient (h) referred to in the above

analysis is the actual heat transfer coefficient mssociated with the
flow field. The measured heat transfer coefficient is determined

from the measured temperature variation with time and can be

implicitly expressed as (T,
oty | o~ b '-‘ﬂ—:*—-}

QC‘;'C!) .
After some algebraic manipulation, the last two exprsssions can

be combined to give the following estimate of the error in the
measured heat transfer coefficients due to tangential or lateral

heat conduciion
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hmh‘ -~ Q:A - J.,Z‘B + C(f)(nt) dn‘i

A & TV Z (48 BF) - (Baf)iwl ) E

LO: | @ -~ @ VX /NS QT
- :" 1.0%3\1 robLd o 5136 - :‘_" -‘13 é{nf)_f ,.._&o__f ln_"
a' (XmC) Li" -élj at -k*-a) —: d‘l‘l L EJ
T o F ) (hd PR IE W
6: 3 (f?dr*!flxﬁjaeﬂ

ate. 2 . i ¥
x| 55+ 13 e S5

B= 5‘[5‘&’#3: t“'ﬁ‘&l& &3! : f:m’Q TOI:%%%J
c- ,t‘[(aJ *i"é;*oc('ar)_]
T L% o, T T,
2
aT = 40T,
1t Ad" o7 B, c(24)e,? dat o,
e’ GO%7 m W
uro.ot the order of 0.1, then for Fourier numbers and non-dimensional

ttlg increments of the order of 1.0, the above cxprolnian is approxi-

. mated By

hob'y, 24 . w78 +cAde(..,2‘
e s

The first and third term in the above expression are dependent upon

the initial temperature gradient and convective heat tranafer gradients

respectively., 7The second term is dependent upon the varistion of the

convective heat transier trudiontl and ths initial temperaturae gradients.
Io order to minimize ths efiects of lateral heat conduction in

wind tunnel heat transfer experinents, it is desirable to obtain the
A=-8

e e———————_ o taspere o
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data as close to the initial instant as possible, However, as noted

in the previous section, s time of approximately one Fourier numbar
é : must elapse before valid measurements can be made by the transiant

; calorimeter approximation.

} . Two additional restrictions which limit the minimum time at
which the measurements can be made are the response time of sampling

rate of the data recording system, and the time required to establish

flow around the model. ;
In the present series of experiments conduction errors are éf"
introduced due tc two primary factors. '
(1) Some of the heat transfer measurements were pbtnincd in i

regions on the cone where large circumferential gradieants in the heat

transfer coefficient occur.

T

(2) An initiual temperature gradient 18 1ntroduped on the surface
of the cone becanse vaeful zloﬁ was not instantaneously established
H ' around the rmdél. The delay in estnbilshinz useful flow is duo fo
the fact that the cooling shield, which covers the model while steady

flow is established in the test section, is withdrawn at a speed of

1

'

|

i

|

!
approximately 2 ft/sec. Consequently, when the model is at the . diyqﬁﬁ
largest angle of attack, approximately 0.5 second passes before the “él |

tip of the cone 18 exposed to the incident flow. During this pericd ¢

. | a temperature gradient is established around the model surface due to" %

the differences in the amvunts of convective heat transfer that each (

portion of the model has experiencéd. | i
Since the thermocouples were situated nlong rays that were 186°

romoved from each other, it was impossible to measure the 1u1€ial

circumferential Lemperature gradients. In order to obtain an ] 1

A-O
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estimate for the tangential heat conduction in the measured heat
transfer dats, it is assumed that the presence of the cooling shield
does not alter the heat transfer coefficlent from its true value.
This assunpiion neglects the problem associated with the interaction
‘between the shock wave Irom the shield and the boundary layer on the
cone. One ocan therefore express the error intreduced by this initial

Vo
T gradient ae

[ () e B e

The guantity 71 is the time roquired for the shield to clear the

nodel at esch point, This time is approximatsd by the relationship

4 = ? ;,.,(./44)/& | Yar Shew Speep

Substituting thess results into the expresgion for the error

j§  ‘.;ociat;d_vith tangential hsat conduction, one obtains

httié {4,, 'asmlmqg 9——:5) [ "ﬂ['* %“.&&—*quzg_ﬂ

' o | adn g smS nfhiet)y
BN Rkl k R EE S )l]
-."r[g?\'*‘,l% *‘g‘_‘ ;P‘ - z‘fl -I...lmnﬂh 0‘)(#@%) L,,,m&?”)}

+ ot (aal)y [l e (’-’h) }

b e — —— — = T s i ovvenamrermm s . R

B e 1 L e
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It is noted that the relative error in transient heat transfer
measurements due to tangential heat conduction depends upon the
location on the vcne, the heat transfer distribution and the time
et whish the moasurcmsnts are wmda.

An estimate of the error associated with the measured heat
trznsfer rate on the most windward stresmline of the cone is
prasented in figure (A-4), These results were determined from
the above formula with the following assumptions.

(1) windward heat transfer distribution: h, = c, §70-23

(2) circumferential heat transfer distribution: %; - cosdlzw

(3) constant Biot number: hd’/k = 0.1

(4) shield speed: V, = 24 inches/sec

(5) thermal diffusivity: o, - 7.2 x 10"3 (inchos)z/sec
(6) =mngle of attack: aq = 55°

(7) wall thickness (d’) = 0.020 inch

For the windward streamline case considered; heat conduction in

the circumferential direction introduced the largest comtribution to

the conduction error. The results indicate that by taking the

measurements within 0.20 seconds from the establishment of flow, the

errox due to tangential conductior in the windward mé&anrcmunt- will

be less than 10 percent at stations beyond 1,78 inches from the tip.

In ordex to reduce the error in the data obtained at the thermocouple

looxted 1.00 inches from the tip it was necessary to use the data "
obtained at approximately 0,10 second from the establishment of the
flow. (Data could not be obtained any earlier than this time since
approximately 0.110 second elapsed between measurements at each

thermocouple.)
A~1l1

—————s SRR
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In view of the fact that tangential conduction effects required
that the data be obtaimned at approximztely 0.1-0.2 second from the
3 tivs flow w VT AGE uumiius RS &1, w06 ILBCTS assoclmied
with normal conduction should also be considered, The maximum
eatinated relative errors asscciated with the windward streamline

measuraenents due to normal and tangential conduction are tabulated

below: . o _ -
X h-h’ h-h’

, ~h |Normal Rk |[Tangential

Conduction Conduction
1.00 +0.08 +0,21
1,75 +0.08 +0.10
2,50 +0.,08 40,06
3.25 40,08 +0,04
6.25 +0.08 +0.02
7.00 . +0.08 | 40,02
7.75 _ +0.08 ' +0.01
_ | 8.50 - 40.08 ' +0.01
?j . 9.28% +0.08 +9.01
10.75 40,08 - +0,01

3w e e

A-12
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